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Sheet 1: Density matrix, Bloch states and Controlled Uni-
taries

1.1

We are given the state

|ψ〉 = eiφ
(
cos

θ

2
|0〉+ eiαsin

θ

2
|1〉
)
.

a)

Construct the according density matrix via ρ = |ψ〉〈ψ|.
First the global phase eiφ cancels due to adjoint 〈ψ|.

We obtain

ρψ = |ψ〉〈ψ| =
(

cos2 θ2 e−iαcos θ2 sin θ2
eiαcos θ2 sin θ2 sin2 θ

2

)
=

1

2

(
cosθ + 1 sinθ(cosα− i sinα)

sinθ(cosα+ i sinα) 1− cosθ

)
=

I + cos θ σz + sin θ cosασx + sin θ sinασy
2

.

such that the coefficients are nx = sin θ cosα, ny = sin θ sinα and nz = cos θ. Using sin2φ+cos2φ =
1 it is easy to see that ‖n‖ ≤ 1. In fact, even the equality holds, due to |ψ〉 being a pure state,
more on that later.
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b)

We can represent any mixed state ρM as a sum of pure states |ψi〉, such that

ρM =
∑
i

pi |ψi〉〈ψi| =
∑
i

piρi

Using the linearity of the sum, we write

ρM =
∑
i

pi
1

2

(
I + nxiσx + nyiσy + nziσz

)
(1)

and just redefine the coefficients as ñk =
∑
i pinki for k ∈ {x, y, z} and obtain again a valid

description in the Bloch basis.

c)

We obtain ρ = I
2 from nk = 0 for k ∈ {x, y, z}. This refers to the maximally mixed state. (Can be

checked via some measure of entropy)

d)

Show that ρ is pure iff ‖n‖ = 1

There are numerous (but mathematically equivalent) properties of a density matrix ρ, that show
whether or not ρ refers to a mixed or a pure state. Here are some

(i) ρ = ρ2

(ii) Tr[ρ2] = 1

(iii) rankρ = 1

(iv) . . .

Here we will use the first one, i.e. it remains to show that ρ = ρ2 iff ‖n‖ = 1.

Compute ρ2 for

ρ =
I + nxσx + nyσy + nzσz

2

This yields 16 terms, which are the following

• 6 terms: all terms between the I term and the σ-terms giving ρ− 1
2 I

• 6 terms between the σ-terms. These vanish due to anti-commutation [σi, σj ]+ = δij2 I

• the 4 terms squared. These give 1
4 (1 + ‖n‖2)I.

Hence, summing all of these we will obtain ρ = ρ2 iff ‖n‖ = 1.
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1.2

We consider the state

|ψ〉 =
1√
3
|0〉 − α |1〉 ,

the Pauli matrices and the Hadamard gate

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, H =

1√
2

(
1 1
1 −1

)
.

a)

We require 〈ψ|ψ〉 = 1, i.e. 1 = 1
3 + α · α∗. This equation is satisfied for α = eiφ

√
2
3 , therefore we

cannot define α uniquely, the phase remains arbitrary.

b)

α ∈ R+ iff φ = 0, hence the state is |ψ〉 = 1√
3
|0〉 −

√
2
3 |1〉. Action of said operators gives

• σx |ψ〉 = −
√

2
3 |0〉+ 1√

3
|1〉

• σy |ψ〉 = i
√

2
3 |0〉+ i 1√

3
|1〉

• σz |ψ〉 =
√

1
3 |0〉+

√
2
3 |1〉

• H |ψ〉 = 1√
6

(
(1−

√
2) |0〉+ (1 +

√
2) |1〉

)
c)

Acting with the Hadamard gate on the general density matrix ρ is given by HρH. Such an action
switches coefficients to

HρH =
I + nzσx + nxσz − nyσy

2
.

This will not change ‖n‖ and the purity of the state. This makes sense as local operations can
never change the correlation with another system, i.e. the entanglement with another system.

d)

When measuring in the σy basis we obtain either one of two eigenstates, which are given by

|+y〉 =
1√
2

(|0〉+ i |1〉) |−y〉 =
1√
2

(|0〉 − i |1〉)
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the respective operators then are |+y〉〈+y| and |−y〉〈−y|, such that we can obtain the probability
for each of them via

P(+|y) = Tr[|+〉〈+|y |ψ〉〈ψ|] = | 〈ψ|+y〉 |2 .

Plugging in our state in this expression we get

〈ψ|+y〉 =
1√
2

(√1

3
+ i

√
2

3

)
.

Of which we take the squared absolute value ⇒ P(+|y) = 1
2 .

1.3

a)

Define the Pauli group for n qubits as

Pn =
{
eiθπ/2σj1 ⊗ · · · ⊗ σjn |θ = 0, 1, 2, 3, jk = 0, 1, 2, 3

}
. (2)

We want to show that if we act on any Pauli matrix with one of said matrices we remain in the
Pauli group.

Action on σ0 = I2:
All gates are unitary, hence by definition: UIU† = I

Action on σz =

(
1 0
0 −1

)
:

For the phase gate S:

SσzS
† =

(
1 0
0 i

)(
1 0
0 −1

)(
1 0
0 −i

)
=

(
1 0
0 −1

)
For Hadamard gate H:

HZH† = HZH = H

(
|0〉〈0| 0

0 − |1〉〈1|

)
H =

(
|+〉〈+| 0

0 − |−〉〈−|

)
= X

For CNOT gate:

CNOT12Z2CNOT12 = H2CZ12H2Z2H2CZ12H2 = H2CZ12X2CZ12H2

= H2

(
|0〉〈0|1 ⊗ I2 + |1〉〈1|1 ⊗ Z2

)
X2CZ12H2 = H2X2

(
|0〉〈0|1 ⊗ I2 − |1〉〈1| ⊗ Z2

)
CZ12H2

= H2X2Z1CZ12CZ12H2 = Z1 ⊗ Z2

Action on σx =

(
0 1
1 0

)
:

For S gates:
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SXS† = Y ⇒ S†Y S = X

For H gates: (us previous result)

HXH = Z

For CNOT gates:

CNOT12X2CNOT12 = H2CZ12H2X2H2CZ12H2 =

= H2CZ12Z2CZ12H2 = I1 ⊗X2

b)

We are interested in a general single-qubit unitary U given by

U = Rz(β)Ry(γ)Rz(δ) ,

where for k ∈ {x, y, z} the given functions are Rk(θ) = exp(−i θ2σk).
Our goal is to show that a two-qubit controlled-U gate can be built from a combination of CNOT
gates and single-qubit rotations, according to the quantum circuit construction below:

Here, A, B and C are single-qubit gates, chosen as the following combinations of single-qubit
rotations,

A =Rz(β)Ry(γ/2), (3)

B =Ry(−γ/2)Rz(−(δ + β)/2), (4)

C =Rz((δ − β)/2). (5)

To show that figure creates the desired action, we split the task into three parts.

(i) Show that ABC = I holds.
This is done by using commutation between equivalent operators [σk, σk] = 0.

ABC = e−i
β
2 σz e−i

γ
4 σy ei

γ
4 σy ei

(δ+β)
4 σz e−i

(δ−β)
4 σz = e−i

β
2 σz ei

β
2 σz = I

(i) Show that XRy(θ)X = Ry(−θ).

Xe−i
θ
2σyX = X

(
cos

θ

2
I− isin θ

2
σy
)
X = Ry(−θ) (6)

Also remember XZX = −Z
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Use this equality to calculate AXBXC:
We notice that XBX is

XBX = XRy(−γ
2

)Rz(−
(δ + β)

2
)X = XRyXXRzX = Ry(

γ

2
)Rz(

(δ + β)

2
) (7)

Plugging this in we obtain AXBXC = U . Now we also consider also the controlled operation,
giving us

A2

(
|0〉〈0| ⊗ I2 + |1〉〈1| ⊗X2

)
B2

(
|0〉〈0| ⊗ I + |1〉〈1| ⊗X2

)
C2 =

= |0〉〈0| ⊗A2B2C2 + |1〉〈1| ⊗A2X2B2X2C2 = |0〉〈0| ⊗ I + |1〉〈1| ⊗ U

Sheet 2: Entanglement

2.1

a)

Show that the two-qubit pure state is entangled:

∣∣Ψ+
〉

=
|00〉+ |11〉√

2

If the state is not entangled, but instead a product state, there exist probability amplitudes such
that we can write ∣∣Ψ+

〉
= (α1 |0〉+ β1 |1〉)⊗ (α2 |0〉+ β2 |1〉) .

To obtain the desired that we require α1α2 = β1β2 = 1√
2

while also α1β2 = α2β1 = 0. Such

variables do not exist, therefore the state is not a product state.

b)

Application of the Pauli matrices to the state gives

X1

∣∣Ψ+
〉

= X2

∣∣Ψ+
〉

=
|01〉+ |10〉√

2

Z1

∣∣Ψ+
〉

= Z2

∣∣Ψ+
〉

=
|00〉 − |11〉√

2

Y1
∣∣Ψ+

〉
= Y2

∣∣Ψ+
〉

=
|10〉 − |01〉√

2

In the last equation we neglected the global phase.
The entanglement of the state remains unchanged as local operations never change entanglement.
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c)

We show the (up to a local unitary) equivalence between the state |Ψ+〉 and applying the CZ gate
to |+〉 |+〉. Proof:

CZ12 |+〉 ⊗ |+〉 =
(
|0〉〈0| ⊗ I2 + |1〉〈1| ⊗ Z

)
|+〉 ⊗ |+〉 =

=
1√
2

(
|+〉 |0〉+ |−〉 |1〉

)
Applying the Hadamard gate to the first qubit gives the desired state |Ψ+〉.

d)

We evaluate the mixture of multiple entangled states using the density matrix formalism, such
that we obtain

ρ =
1

2

∣∣Ψ+
〉〈

Ψ+
∣∣+

1

2
Z2

∣∣Ψ+
〉〈

Ψ+
∣∣Z2 =

1

4


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

+
1

4


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 =

=
1

2
|0〉〈0|1 ⊗ |0〉〈0|2 +

1

2
|1〉〈1|1 ⊗ |1〉〈1|2

which is not an entangled state.

For an unequal mixing according to

ρ = p
∣∣Ψ+

〉〈
Ψ+
∣∣+ (1− p)Z2

∣∣Ψ+
〉〈

Ψ+
∣∣Z2 =

=


1
2 0 0 p− 1

2
0 0 0 0
0 0 0 0

p− 1
2 0 0 1

2


By the PPT criterion, this state is entangled for p 6= 1

2 .
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