ML4Q - Quantum Technologies - Tutorial Solutions Sheets 1
and 2

Mariami Gachechiladze, Lukas Franken

March 2020

Sheet 1: Density matrix, Bloch states and Controlled Uni-
taries

1.1
We are given the state

_ 9 9
[) = e“z’(cosi |0) + emsini 1)) .

a)

Construct the according density matrix via p = [¢))(¢)].
First the global phase e!* cancels due to adjoint (1)|.

We obtain
20 —ia 0 00
_ _ [ cos7g e '“cosg sing
pi = [NV (ew‘cosg sing SiHQg
_1 cosf + 1 sinf(cos o — i sin «)
~ 2 \sinf(cosa + isin ) 1 — cosf

_IT+cosbo, +sinfcosao, +sinfsinaoy,

= 5 )

such that the coefficients are n, = sinf cosa, n, = sinfsina and n, = cos . Using sin?¢+cos?¢p =
1 it is easy to see that ||n]| < 1. In fact, even the equality holds, due to |¢) being a pure state,
more on that later.




b)

We can represent any mixed state pps as a sum of pure states |i;), such that

M= Zpi |hiYaps| = Zpim

Using the linearity of the sum, we write
1
oM :Zpii(ﬂqtnmiaernyjay+nziaz) (1)
i

and just redefine the coefficients as ny = Y. pink, for k € {z,y,2} and obtain again a valid
description in the Bloch basis.

)

We obtain p = % from ny, = 0 for k € {z,y, z}. This refers to the maximally mixed state. (Can be
checked via some measure of entropy)

d)
Show that p is pure iff ||n| =1

There are numerous (but mathematically equivalent) properties of a density matrix p, that show
whether or not p refers to a mixed or a pure state. Here are some

(4)

(i)
(#41) rankp =1
(iv) .

p=
Tr[p?] =

Here we will use the first one, i.e. it remains to show that p = p? iff ||n|| = 1.

Compute p? for

I+ ngo,p +nyoy +n.0,
2

This yields 16 terms, which are the following
e 6 terms: all terms between the I term and the o-terms giving p — %]I
e 6 terms between the o-terms. These vanish due to anti-commutation [o;,0;]+ = 6;;21
e the 4 terms squared. These give 1 (1 + |n|*)L.

Hence, summing all of these we will obtain p = p? iff ||n|| = 1.



1.2

We consider the state

1
|¢>=ﬁ|0>—a\1>7

the Pauli matrices and the Hadamard gate

(01 (0 —i (10 111
=1 0) %" \i o) "0 -1) " T AU —1)
a)

We require (¢|¢) =1, ie. 1= % + o - o*. This equation is satisfied for o = e*® \/g, therefore we
cannot define v uniquely, the phase remains arbitrary.

b)

a € Ry iff ¢ = 0, hence the state is |¢) =

o 0o lt) =210+ L)
o oy 9) =i\/210) +i 5 1)

o o) = 310+ /2 1)

o Hlg)=J=((1-v2)|0) + (1 +V2)|1))

f \/> |1). Action of said operators gives

c)

Acting with the Hadamard gate on the general density matrix p is given by HpH. Such an action
switches coefficients to

I+ n,0, +ng0, —nyoy
5 .

This will not change ||n|| and the purity of the state. This makes sense as local operations can
never change the correlation with another system, i.e. the entanglement with another system.

HpH =

d)

When measuring in the o, basis we obtain either one of two eigenstates, which are given by

[+y) = 7(|0> +ilh) =) = (|0> —i[1)

%\



the respective operators then are |+,)+,| and |—,)}—,|, such that we can obtain the probability
for each of them via

P(+ly) = Tr[l+)+,, [X¢] = [ (@]+,) [*

Plugging in our state in this expression we get

ot = 55 + f

Of which we take the squared absolute value = P(+|y) =

1.3
a)
Define the Pauli group for n qubits as
P, ={e""6; @ ®0;,10=0,1,2,3,js =0,1,2,3} . (2)

We want to show that if we act on any Pauli matrix with one of said matrices we remain in the
Pauli group.

Action on og = Is:
All gates are unitary, hence by definition: UIUT =1

. 1 0
Action on o, = (0 1).

st (505 20 -0 %)

For Hadamard gate H:

HZH' = HZH = H <0>0<0| _|?><1> H= <|+>0<+| | 0 > — X

For the phase gate S:

For CNOT gate:

CNOTlngCNOTlg = H20Z12H2Z2H20212H2 = H20212X20212H2
= H,(]0)0], ® I + [1}1]; ® Z2>X20212H2 = Ho X5 (|0X0], @ I — [1X1| ® Zo)C Z12H>
= H2X22102120212H2 = Zl X Z2

. 0 1
Action on o, = (1 0).

For S gates:



SXst=y = SlvS=X

For H gates: (us previous result)
HXH =7
For CNOT gates:
CNOTngQCNOTlg = HQCZ12H2X2H20212H2 =

= HyCZ1225CZ12Hy =11 ® X
b)
We are interested in a general single-qubit unitary U given by

U= R.(8) Ry(7) R=(9) ,

where for k € {z,y, 2} the given functions are Ry (0) = exp(—iloy).
Our goal is to show that a two-qubit controlled-U gate can be built from a combination of CNOT
gates and single-qubit rotations, according to the quantum circuit construction below:

=+OHHB Al

Here, A, B and C are single-qubit gates, chosen as the following combinations of single-qubit
rotations,

B =Ry (—/2)Ro(~(6 + B)/2),
C =R.((6 - 5)/2).

—~ o~
Ut > W
=

To show that figure creates the desired action, we split the task into three parts.

(7) Show that ABC =T holds.
This is done by using commutation between equivalent operators [0, o] = 0.

ABC — ¢ i59= o=i30y ,iT0oy i G+8) e_iwzm 0. _ pmibo. gife. _7
(¢) Show that XR,(6)X = R,(—0).
—ils 0 . . 0
Xe "2 UX:X(COSE]Ifzsmiay)X:Ry(fﬁ) (6)

Also remember XZX = -7



Use this equality to calculate AXBXC:
We notice that X BX is

XBX = XRy(—-)R.(- J; )X = XRXXR.X — Ry(%)Rz(((s ; 5, (7)

2

Plugging this in we obtain AXBXC = U. Now we also consider also the controlled operation,
giving us

Az (10)0] ® Iy + [1X1] ® X2) B2 (|0X0] @ T+ [1)(1] ® X2)C =
= [0)0] ® A3 BoCh + |1)(1| ® A3 X2B2X5Cs = |0X0| @ I+ |1X1| @ U

Sheet 2: Entanglement

2.1
a)
Show that the two-qubit pure state is entangled:
00 11
gy — 100+ 1)
V2

If the state is not entangled, but instead a product state, there exist probability amplitudes such
that we can write

[0 = (a1 ]0) + 61 [1)) ® (a2 |0) + B2 [1)) -

To obtain the desired that we require s = B182 = % while also o182 = asf; = 0. Such
variables do not exist, therefore the state is not a product state.

b)

Application of the Pauli matrices to the state gives
o) = o) - D10
7y [0t = 2, |wt) = |00>\;§|11>
Y1!¢J*>=Y2|\1/+>:w>\_[2|01>

In the last equation we neglected the global phase.
The entanglement of the state remains unchanged as local operations never change entanglement.



c)
We show the (up to a local unitary) equivalence between the state [¥+) and applying the CZ gate
to |[+) |[4+). Proof:
CZia|+) ® [4) = (10)0| @ I + [1X1] ® Z) [+) @ |+) =
1

\/5( [+)10) + =) (1))
Applying the Hadamard gate to the first qubit gives the desired state [¥).

d)

We evaluate the mixture of multiple entangled states using the density matrix formalism, such
that we obtain

100 1 1 00 -1
1 1o 1looo ol 1[0 00 of
p= [ UTNYT [+ 52 VXU Z =210 o 0 ol tilo 00 of"

100 1 100 1

1 1
— 5 [0X0l, ®10)0l, + 5 111, @ 1)1,
which is not an entangled state.
For an unequal mixing according to
p=p|UTNUT|+(1—p)Z |[VTXET| Z, =

p

o owvim
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By the PPT criterion, this state is entangled for p # %



